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1 Camera models

Figure 1: Camera model: perspective projection.

Before starting our analysis, we introduce the basic properties of projections that we will use
throughout the report. In particular, we will introduce a generic camera model and then we will
move towards a simplified model that is more suitable for the proposed study.

Figure 1 describes a simple camera model in which a perspective projection is applied to map
the point X, expressed in world coordinates, onto the point u, expressed in pixel coordinates. We
are given a world reference system ⊥W = {X1, X2, X3} that represents the 3D reference frame of
each real-world object. Then we have a camera-based reference system ⊥C= {C1, C2, C3} that is
centered on the optical centre of the camera, and an image plane frame ⊥X= {x1, x2}. Finally, we
consider the pixel coordinates ⊥P = {u1, u2}, that are centered in the upper left corner of the CCD.
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The projection model considered here is inspired by the pin-hole camera and it is based on
perspective projection. In particular, the rigid body motion between the world-frame and the
camera-frame consists of a rotation of the points in ⊥W about X3, X2, and X1 of the angles ϕ3,
ϕ2, ϕ1, respectively, followed by a translation TC = [TC1 , TC2 , TC3 ]� (where TC is the center of
the word-frame expressed in camera coordinates). For convenience, the rotation is described by a
matrix R ∈ IR

3,3,

R =




1 0 0
0 cosϕ1 −sinϕ1

0 sinϕ1 cosϕ1



 ·




cosϕ2 0 sinϕ2

0 1 0
−sinϕ2 0 cosϕ2



 ·




cosϕ3 −sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1





and
XC = RX + TC . (1)

The perspective projection is defined by the focal length f , that is the distance of the camera-
frame origin and the image plane X . The C3 coordinate of ⊥C is assumed to be orthogonal to the
image plane X . The perspective projection maps a point expressed in ⊥C onto a point of the image
plane, expressed in ⊥X . Formally,

x =
�

x1

x2

�
=

f

XC3

·

�
XC1

XC2

�
. (2)

The intersection of the optical axis with X is called principal point, and its coordinates in ⊥P

are given by u0 = [u01 , u02 ]�, whereas they are [u0, f ] in ⊥C . We indicate with ku1 and ku2 the ratio
between the coordinates in ⊥P and the ones in ⊥X , whereas s represents the skew between the axis
of ⊥P . We can pass from image plane coordinates to pixel coordinates with

u =
�

u1

u2

�
=

�
ku1x1 + sx2

ku2x2

�
+ u0. (3)

From now on we indicate with Õ the homogeneous coordinates of a generic point O, i.e. if O =
[O1, O2, O3]� then Õ = [λO1, λO2, λO3, λ]�. The camera model can be expressed as a combination
of rigid-body transform, perspective projection, and CCD imaging, and represented as

ũ =




ku1 s u01

0 ku2 u02

0 0 1








f 0 0 0
0 f 0 0
0 0 1 0








R TC

0 0 0 1



 X̃ (4)

or, more compactly,

ũ = K[R|TC ] · X̃ :=




αu1 αs u01

0 αu2 u02

0 0 1







 R T



 X̃ (5)

where αu1 = fku1 , αu2 = fku2 and αs = fs. The matrix K is commonly referred to as the
calibration matrix, and it only depends on the intrinsic camera parameters. To complete the
camera model we should also take into account the lens distortion effect (fisheye, radial distortion,
...), shortly resumed by a non-linear function d(·),

ũ = K · d( [R|TC ] · X̃ ). (6)
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If we restrict our analysis to a small region of the image plane, the effects of d(·) are negligible. For
simplicity, in the following analysis we discard the lens distortion d(·).

Perspective cameras belong to a larger class of cameras that are commonly referred to as
projective cameras. Projective cameras are described by a general 3× 4 matrix Pproj ,

ũ = PprojX̃ =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



 X̃ (7)

that has 11 degrees of freedom, since the overall scaler of P does not matter (usually p34 = 1).

1.1 Affine camera

Under some specific conditions, we can simplify the perspective camera model to reduce the degrees
of freedom of the map, making it more tractable. From (5) we recall that

ũ = K[R|TC ] · X̃ =




αu1 αs u01

0 αu2 u02

0 0 1








r11 r12 r13 TC1

r21 r22 r23 TC2

r31 r32 r33 TC3



 X̃ (8)

Now, we start moving the camera far away from the scene, along C3, and we also increase f by
a positive factor to get a magnification effect (zooming) and without changing the image size. At
time t = 0 we have z(0) = TC3 , whereas at each time interval t equation (8) becomes

ũ =





z(t)
z(0) · αu1

z(t)
z(0) · αs u01

0 z(t)
z(0) · αu2 u02

0 0 1








r11 r12 r13 TC1

r21 r22 r23 TC2

r31 r32 r33 z(t)



 X̃ (9)

=
z(t)
z(0)

·K




r11 r12 r13 TC1

r21 r22 r23 TC2
z(0)
z(t) · r31

z(0)
z(t) · r32

z(0)
z(t) · r33 z(0)



 X̃ (10)

When t→∞, we get

ũ = K




r11 r12 r13 TC1

r21 r22 r23 TC2

0 0 0 TC3



 X̃ (11)

that is an instance of affine camera, with the following properties and differences from the perspec-
tive model:

• the perspective camera does not preserve parallelism, length, and angle. It preserves collinear-
ity and incidence;

• the affine camera does not preserve length and angle. It preserves collinearily incidence, and
parallelism.

Affine cameras are also referred to as cameras at infinity.

Proposition 1.1 The affine camera model is not sensitive to changes in depth along the optical

axis.
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Proof: We consider the plane through the world origin perpendicular to the optical axis, and
we assume, without any lack of generality, that R = I, so that we have X3 = 0. Suppose that we
move the plane by ∆ along the optical axis, so that X3 = ∆. The image of any point on such plane
is, in the case of a perspective camera,

ũpersp = K




x1

x2

TC3 + ∆



 (12)

For affine cameras we have

ũaff = K




x1

x2

TC3



 (13)

so that we can see that the affine mapping is not affected by the variation of depth.

�

Proposition 1.2 In an affine camera model, given the depth variations ∆ of the objects in the

scene and the average depth T
avg
C3

, we have

uaff − upersp =
∆

T
avg
C3

(upersp − u0) (14)

where uaff and upersp are the coordinates of and an affine and a perspective projection, respec-

tively.

Proof: Once we dehomogenize the coordinates of (12) and (13) and we substitute TC3 with
the average depth of the objects in the scene T

avg
3 , it is easy to show that the proposition holds

true.

�

Proposition 1.3 When the variations of depths ∆ of the objects in the scene is small compared

to the average depth T
avg
3 , and if consider that the distance of each point from the optical axis is

small (i.e. small field of view) there are almost no differences between an affine or a perspective

camera.

Proof: Straightforward from Proposition (1.2).

�
Affine projections constitute a large class of projections that can be further divided inro several

specific instances (weak perspective, orthogonal projection, ...). They are all characterized by the
following form,

ũ = Paff X̃ =




p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 p34



 X̃ (15)

that has 8 degrees of freedom since the overall scale does not matter (i.e. we can set p34 = 1).
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1.1.1 Decompositions of the affine camera matrix

We can go one step further and avoid including the coordinates of the principal point, since it
is not an intrinsic property of the affine camera and it depends by the particular choice of world
coordinates.

Proposition 1.4 The principal point u is not an intrinsic property of an affine camera.

Proof: Following (11) and the result of Proposition (1.1) the affine camera projection, and,
in particular, the matrix Paff , can be written as1

ũ = Paff X̃

= K




r11 r12 r13 TC1

r21 r22 r23 TC2

0 0 0 1



 X̃

=




α1 αs u01

0 α2 u02

0 0 1








r11 r12 r13 TC1

r21 r22 r23 TC2

0 0 0 1



 X̃

=
�

K1:2,1:2 u0

0� 1

� �
R1:2,1:3 TC1:2

0� 1

�
X̃

=
�

K1:2,1:2R1:2,1:3 K1:2,1:2TC1:2 + u0

0� 1

�

=
�

K1:2,1:2 0
0� 1

� �
R1:2,1:3 TC1:2 + K

−1
1:2,1:2u0

0� 1

�
X̃

=




α1 αs 0
0 α2 0
0 0 1








r11 r12 r13 T̂C1

r21 r22 r23 T̂C2

0 0 0 1



 X̃

= K̂




r11 r12 r13 T̂C1

r21 r22 r23 T̂C2

0 0 0 1



 X̃.

Notice that the calibration matrix K̂ does not include the coordinates of the principal point u. The
matrix K1:2,1:2 is positive definite by construction.

�

Proposition 1.5 An affine camera corresponds to an affine transformation A3D in the 3D space,

followed by an orthographic projection Oortho to the image plane, followed by an affine transforma-

tion A2D on the image plane.

Proof: It follows from the following derivation,

ũ = (A2D ·Oortho ·A3D) · X̃
1We use a Matlab-like notation to indicate sub portions of matrices of vectors. For instance A1:n,1:m are the first

n rows and m columns of A.
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=




b11 b12 b13

b21 b22 b23

0 0 1








1 0 0 0
0 1 0 0
0 0 0 1









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1



 X̃

=




p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1



 X̃

= Paff X̃.

�
Notice than the A2D transformation is basically related to the camera calibration matrix.

1.2 Planar affine camera

If we restrict the viewing conditions, we can additionally simplify the affine camera model. We
suppose that the camera is viewing a planar scene, so that, without loss of generality, we can drop
one of the three coordinates of the 3D space after having appropriately adjusted the matrix R to
take into account the rotation of the viewing plane (we indicate with R̂ = [r̂ij ] the new rotation
matrix). We consider the case in which we have X3 = 0. Following the result of Proposition (16),
we can plug the rotation R̂, remove X3, and we get the planar affine camera model,

ũ = K̂




r̂11 r̂12 T̂C1

r̂21 r̂22 T̂C2

0 0 1








X1

X2

1



 . (16)

that can be further rewritten as,

u =
�

u1

u2

�
=

�
α1 αs

0 α2

� �
r̂11 r̂12 T̂C1

r̂21 r̂22 T̂C2

�


X1

X2

1



 (17)

= K̂1:2,1:2[R̂1:2,1:2|T̂C1:2 ]




X1

X2

1



 (18)

=
�

p11 p12 p13

p21 p22 p23

�


X1

X2

1



 (19)

leading to a 2D to 2D model with 6 degrees of freedom.
How can we interpret the role of those degrees of freedom? If we forget about the camera

model and we consider the effects of (19) on the image plane X , in Figure 2 we report a visual
interpretation of the 6 degrees of freedom. On the other hand, with the aim of understanding the
transformations that were applied to the plane in the 3D space and that leaded to the corresponding
pixels on X , we can give another interpretation to (19). We rewrite (19) as

u =
�

p11 p12 p13

p21 p22 p23

�


X1

X2

1



 =
�

p11 p12

p21 p22

� �
X1

X2

�
+

�
p13

p23

�
= A

�
X1

X2

�
+ ZC . (20)
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Figure 2: Planar affine imaging: transformation on the image plane X corresponding to the 6
degrees of freedom (translation is 2 degrees).

The vector ZC = [ZC1 , ZC2 ]� = K̂1:2,1:2T̂C1:2 is a translation expressed in the camera frame ⊥C .
It is related but not correspondent to the translation T̂C1:2 of (17) from the optical center to the
origin of ⊥W , due to the effect of the intrinsic camera parameters. The matrix A = K̂1:2,1:2R̂1:2,1:2

is a 2× 2 positive define matrix, since K̂1:2,1:2 is positive definite by construction and R̂1:2,1:2 is the
2nd leading principal minor of a 3D rotation matrix, so that it is positive definite (since a rotation
matrix is such that det(R) = 1).

Now, using classic arguments from spectral theory and linear algebra, we can decompose the
matrix A [3].

Theorem 1.1 A positive 2× 2 matrix A that defines an affine map which is not a similarity has

a unique decomposition

A = λ ·Rϕ1Uϕ2Rϕ3 (21)

where λ > 0 and Rϕ1, Uϕ2, Rϕ3 are the following 2× 2 matrices,

Rϕ1 =
�

cos ϕ1 − sin ϕ1

sin ϕ1 cos ϕ1

�
(22)

Uϕ2 =
� 1

cos ϕ2
0

0 1

�
(23)

Rϕ3 =
�

cos ϕ3 − sin ϕ3

sin ϕ3 cos ϕ3

�
, (24)

with ϕ1 ∈ [0, 2π], ϕ2 ∈ [0,
π
2 ), and ϕ3 ∈ [0, π). In the case of a similarity transformation, we have

ϕ2 = 0.

Proof: The matrix A�A is a symmetric positive semidefinite matrix, and it can be decomposed
as A�A = ODO�, where O is an orthogonal transform (i.e. O� = O−1) and D is a diagonal matrix of
positive eigenvalues. We define B = AOD

− 1
2 , so that BB� = AOD

− 1
2 D

− 1
2 O�A� = AOD−1O�A� =

A(A�A)−1A� = I, and we can conclude that B is an orthogonal transform. It is easy to check that

BD
1
2 O

� = AOD
− 1

2 D
1
2 O

� = AOO
� = A
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and, once we define E = D
1
2 , we have

A = λ ·BEO
�

where B and O are orthogonal matrices and E is a diagonal matrix with positive entries. Since
det(A) > 0, both det(B) and det(O) must share the same sign. Without any loss of generality we
consider the subgroup of orthogonal transformations with unitary determinant (i.e. we rescale E).
If det(B) = det(O) = 1, then B and O are rotations of angles ϕ1 and −ϕ3. If their determinant

is −1, we can premultiply them by
�
−1 0
0 1

�
. We consider ϕ3 ∈ [0, π) (if ϕ3 ≥ π we can replace

ϕ3 with ϕ3 − π and add π to ϕ1). Moreover, E =
�

λ0 0
0 λ

�
, with λ0 ≥ λ. We can group λ to get

E = λ

�
t 0
0 1

�
with t = λ0

λ ≥ 1. Once we replace t with 1
cos ϕ2

, ϕ2 ∈ [0,
π
2 ) we get (21).

�
The angle ϕ3 describes the rotation of the viewing plane around its normal (longitude). The angle
ϕ2 is between the normal to the viewing plane and the optical axis (latitude), whereas ϕ1 is the
camera spin around its optical axis. The parameter λ measures the zoom level (the camera can
move forward and backward). See Figure 3. Notice that the matrix Uϕ2 is a tilt transformation

Figure 3: Affine camera viewing a plane, as described by (21).

of angle ϕ2 along the first coordinate. It scales the first coordinate while keeping fixed the second
one.

2 Digital image

The analysis of Section 1 implicitly considers continuos pixel coordinates u = [u1, u2]� and an
infinite resolution image plane X . In order to move towards a discrete representation of the digital
image, we have to introduce an additional layer of computations. Moreover, we must also take into
account the optical blur of the camera lens. We indicate with zd a digital image, and with zc its
continuos counterpart on X , so that zc(u1, u2) is the pixel value at coordinates u. We indicate with
zd(ux, uy) the pixel value at the discrete coordinates (ux, uy) ∈ Z2. The relationship between zu

and zd can be modeled by
zd = S1Gσ1zc (25)
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where Gσ1 is a Gaussian convolution with standard deviation σ1 (due to the optical blur of the
camera lens), and S1 is a sampling operator on a regular grid with mesh 1. The value of σ1 is
assumed to be selected such that there is no aliasing in the S1 sampling process. This means that,
if we are given the Shannon-Whittaker interpolation operator S, defined as

(Szd)(u1, u2) =
�

(ux,uy)∈Z2

sinc(u1 − ux)sinc(u2 − uy), (26)

where sincx = sin πx
πx , we have

SS1Gσ1zc = Gσ1zc. (27)

It is easy to check that SS1zd = zd. From a practical point of view assuming that a given digital
image has undergone a Gaussian blur σ1 ∈ [0.5, 1.0] is enough to prevent significant antialiasing.

Looking at (20) and (25) we can sketch the complete model that maps the transformation
from a planar surface to the digital image by means of an affine camera. We define with pc the
“real-world” plane that we are viewing by the camera, and with A an affine map as in (20). It
immediately follows that zc = Apc, and, from (25), our complete mapping from the viewing plane
to the digital image becomes

zd = S1Gσ1Apc. (28)

2.1 Transforming the digital image

What if we change the parameters of the transformation A? Does it correspond to applying the
same transformation to zd? The answer strictly depends on the type of transformation that we
apply. In what follows we make use of continuous operators and in order to apply them to the
discrete image zd we must first use the S operator on zd.

• Translation
Suppose that A is simply a translation T (i.e. pc is parallel to X ). It is easy to verify that T
commute with Gσ1 . If we indicate with τ1 and τ2 the translation offsets, we get

(Gσ1T pc)(a1, a2) =
� �

1
2πσ2

1

e
− (a1−η1)2+(a2−η2)2

2σ2
1 pc(η1 + τ1, η2 + τ2)dη1dη2

=
� �

1
2πσ2

1

e
− (a1+τ1−γ1)2+(a2+τ2−γ2)2

2σ2
1 pc(γ1, γ2)dγ1dγ2

= (Gσ1pc)(a1 + τ1, a2 + τ2)
= (T Gσ1pc)(a1, a2).

We will use the commutativity of T and Gσ1 together with (27) in the following computations.
In order to apply a translation T to zd we must first rebuild the continuos image, then apply
T and finally sample with S1,

T zd := S1T Szd

= S1T SS1Gσ1pc

= S1T Gσ1pc

= S1Gσ1T pc

and we get a translation of the viewing plane (discarding border effects).
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• Rotation
Suppose that A is a rotation R. Similarly to the previous case we can use the commutativity
of R and Gσ1 together with (27) (the commutativity can be verified using the same procedure
followed in the case of translations). We have

Rzd := S1RSzd

= S1RSS1Gσ1pc

= S1RGσ1pc

= S1Gσ1Rpc

and we get a rotation of the viewing plane.

• Zoom
Suppose that A is a uniform zoom Hλ of a factor λ (λ > 1 is a zoom out, λ < 1 corresponds
to a zoom in). This case differs from the previous ones. Let us try to commute Gσ1 with Hλ.
We get

(Gσ1Hλpc)(a1, a2) =
� �

1
2πσ2

1

e
− (a1−η1)2+(a2−η2)2

2σ2
1 pc(λη1, λη2)dη1dη2

=
� �

1
2πσ2

1λ
2
e
− (a1−γ1/λ)2+(a2−γ2/λ)2

2σ2
1 pc(γ1, γ2)dγ1dγ2

=
� �

1
2πσ2

1λ
2
e
− (λa1−γ1)2+(λa2−γ2)2

2σ2
1λ2

pc(γ1, γ2)dγ1dγ2

= (Gσ1λpc)(λa1, λa2)
= (HλGσ1λpc)(a1, a2).

Commuting Gσ1 with Hλ causes an alteration of the standard deviation of the Gaussian kernel.
Now, if we zoom the image zd by a factor λ, we have

Hλzd := S1HλSzd

= S1HλSS1Gσ1pc

= S1HλGσ1pc

= S1Gσ1
λ
Hλpc (29)

so that a zooming operation on zd corresponds with the same operation applied to pc with
a different Gaussian blur. If we replace the original zoom with a zoom on zd blurred by
σ1

√
λ2 − 1 we get

HλGσ1
√

λ2−1zd := S1HλGσ1
√

λ2−1Szd

= S1HλGσ1
√

λ2−1SS1Gσ1pc

= S1HλGσ1
√

λ2−1Gσ1pc

= S1G
r

σ2
1−

σ2
1

λ2

HλGσ1pc

= S1G
r

σ2
1−

σ2
1

λ2

Gσ1
λ
Hλpc

= S1Gσ1Hλpc
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The last equation states that a zoom applied to the viewing plane pc corresponds to a digital
image zd that is first blurred by σ1

√
λ2 − 1 and then zoomed by Hλ. Setting λ > 1 realizes a

zoom-out operation, i.e. some details are lost. The previous equation indicates that in order
to recreate a zoom-out of the plane pc and acquire a digital image using the same lens (σ1), we
have to take the digital image zd, add Gaussian blur, and zoom-out the image. If λ < 1, we
gets zoom-in operation, i.e. we see more details. In order to recreate the zoom-in effect, we
should de-blur zd, and zoom-in the image. This can be appreciated by the negative variance
of the blur operator, σ2

1 −
σ2
1

λ2 < 0.

• Tilt
If A is a tilt Uϕ along one axis we end up in a similar case to the previous one, since Uϕ is
a zoom along one coordinate only (suppose the first one). Again, using the same arguments
of Hλ, it can be shown that it does not commute with Gσ1 . In particular, using Gaussian
separability, it is easy to get the following relationship

Uϕzd := S1UϕSzd

= S1UϕSS1Gσ1pc

= S1UϕGσ1pc

= S1(Gu1
σ1
h

· G
u2
σ1

)⊗ Uϕpc

= S1G
u1
σ1
h

(Gu2
σ1
Uϕpc)

where h = 1
cos ϕ . A tilt in the ux direction of zd corresponds to the same operation applied

to pc (on u1) followed by an anisotropic Gaussian blurring that blurs the tilted axis with
a different standard deviation. If we replace the original tilt with a tilt on zd blurred by
σ1

√
h2 − 1 along ux we get

UϕG
ux

σ1
√

h2−1
zd := S1UϕG

u1

σ1
√

h2−1
Szd

= S1UϕG
u1

σ1
√

h2−1
SS1Gσ1pc

= S1UϕG
u1

σ1
√

h2−1
Gσ1pc

= S1G
u1r

σ2
1−

σ2
1

h2

UϕGσ1pc

= S1G
u1r

σ2
1−

σ2
1

h2

G
u1
σ1
h

(Gu2
σ1
Uϕpc)

= S1G
u1
σ1

(Gu2
σ1
Uϕpc)

= S1Gσ1Uϕpc

The last equation states that a tilt Uϕ applied to the viewing plane pc corresponds to a digital
image zd that is first blurred along ux by σ1

�
1

(cos ϕ)2 − 1 and then tilted by Uϕ.

A natural property of Uϕ is that it can be converted into a tilt along the second coordinate
Uϕ by means of a rotation,

R(−π
2 )UϕRπ

2
= Uϕ. (30)

Finally, we notice that the previously described operators commute (at least in a weak sense),
so that the reported analysis can be easily extended to the case in which a rotation, a translation,
a zoom, and a tilt are combined.
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2.1.1 Scale space

Building the scale space of an image zd consists in computing the function s(σ, zd), which returns
a digital image corresponding to zd blurred by a Gaussian kernel of width σ, for increasing values
of σ. More formally, if we define σ(i) as the function that returns the i-th scale,

s(σ(i), zd) = Gσ(i)zd, i = 0, . . . , q − 1. (31)

Given σ(0) = σ, we write σ(i) = kiσ(0), and, following (29), the scale space can be equivalently
defined in terms of variable zoom operations of a factor ki and using a fixed kernel Gσ,

s(kiσ(0), zd) = Gkiσ(0)zd

= H 1
ki

HkiGkiσ(0)zd

= H 1
ki

Gσ(0)Hkizd

so that the scale space can be interpreted as a zoom out of zd by ki, blur by a fixed kernel of width
σ(0), zoom in of the result by ki.

We can extend this definition including the mean m �= 0 of Gσ, that becomes Gm
σ ,

(Gm
σ zd)(ux, uy) :=

1
2πσ2

� �
e
− (mx+ux−τx)2+(my+uy−τy)2

2σ2 zd(τx, τy)dτxdτy

If we apply a zoom operation Hλ, we have

(Gm
σ Hλzd)(ux, uy) :=

1
2πσ2

� �
e
− (mx+ux−τx)2+(my+uy−τy)2

2σ2 zd(λτx, λτy)dτxdτy

=
1

2π(λσ)2

� �
e
− (λmx+λux−γx)2+(λmy+λuy−γy)2

2(λσ)2 zd(γx, γy)dγxdγy

= HλG
λm
λσ (ux, uy),

that is the analogous of equation (29) when considering the mean of the Gaussian,

G
m
σ Hλzd = HλG

λm
λσ zd. (32)

Given σ(0) = σ, m(0) = m, the extended scale space definition becomes

s(kiσ(0), kim(0), zd) = G
kim(0)
kiσ(0) zd

= H 1
ki

HkiG
kim(0)
kiσ(0) zd

= H 1
ki

G
m(0)
σ(0) Hkizd,

that is, filtering zd with a Gaussian kernel of with kiσ and mean kim corresponds with a zoom out
of zd by ki, blur by a fixed kernel of width σ and centered in m, zoom in of the result by ki.

Now, we recall that zd is the discrete counterpart of the continuos pc (forgetting about the
planar transformations), that has been already blurred by σ1. We redefine the scale space in order

12



to consider this aspect,

s(σ(i), zd) = S1Gσ(i)pc

= S1G
√

σ(i)2−σ2
1
Gσ1pc

= S1G
√

σ(i)2−σ2
1
zd

= S1Gσr(i)zd

where σr(i) =
�

σ(i)2 − σ2
1 is the real blur that we have to apply to zd to a get the element of the

scale space indexed by σ(i).
If we assume σ1 = 0.5, a practical results from related literature [2] suggest to build the scale

space by first doubling the image size (i.e. H 1
2
zd, linear interpolation), leading to an image with

σ1 = 2 × 0.5 = 1.0 due to (29). Several experimentations show that σ(0) = 1.6 is a reasonable
choice for feature extraction, so that, starting from the doubled image, σr(i) ≈ 1.24. Other authors
[3] suggests to use σ1 = 0.8, so that, after doubling the image size, we get an image with σ1 =
2× 0.8 = 1.6. In this case we have to set σr(0) = 0 to get σ(0) = 1.6, i.e. s(σ(0), zd) is simply the
doubled image without any additional blurs.

We consider again the scale space in which σ(i) = kiσ(0). From (29) we have

s(kiσ(0), zd) = S1H 1
ki

Gσ(0)Hkipc

= H 1
ki

(HkiGσ(0)
√

k2
i−1

zd)

= H 1
ki

G
σ(0)

r
1− 1

k2
i

Hkizd (33)

= G
σ(0)
√

k2
i−1

zd

= Gσr(i)zd

In this setting the real blur to be applied to zd is σr(i) = σ(0)
�

k2
i − 1.

Another commonly used property of scale spaces is that if we downscale the image s(2σ(i), zd)
by a factor 1

2 , we get

H2s(2σ(i), zd) = H2G2σ(i)pc

= Gσ(i)H2pc (34)
= Gσr(i)Gσ1H2pc

so that we get a zoomed-out pc blurred by σ(i).

2.2 Artificially generated transformations

Suppose that we are only given a digital image zd and we want to artificially simulate the image
ẑd af the same resolution of zd that corresponds to an affine transformation of the observed plane
on the 3D space. From (20), Theorem 1.1, and the model of (25) we can write

ẑd = g(pc) := S1H 1
λ
(Gσ1Apc)

= S1H 1
λ
(Gσ1T HλRϕ1Uϕ2Rϕ3pc).

13



Using the previously described commutation properties we write ẑd in function of zd,

ẑd = g(zd) = H 1
λ
(T HλGσ1

√
λ2−1Rϕ1Uϕ2G

ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd).

Translation T and zoom H weakly commute, in the sense that there exists a translation T for
which T H = HT . We get

ẑd = g(zd) = T H 1
λ
HλGσ1

√
λ2−1Rϕ1Uϕ2G

ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd.

Now, suppose that the optical axis is aligned with the observed point (i.e. no translation), then

ẑd = g(zd) = H 1
λ
HλGσ1

√
λ2−1Rϕ1Uϕ2G

ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd

= H 1
λ
G

σ1

q
1− 1

λ2

HλRϕ1Uϕ2G
ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd

= Rϕ1H 1
λ
G

σ1

q
1− 1

λ2

HλUϕ2G
ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd

Comparing the last expression with (33), it is easy to see that we can write the above formula as

ẑd = Rϕ1s

�
λσ1, Uϕ2G

ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd

�
.

that leads to the following proposition.

Proposition 2.1 We are given a plane in a 3D space, an affine camera with blur σ1, and the

digital image zd acquired by the camera. A transformation of the plane, parametrized by the Euler’s

angles ϕ1, ϕ2, ϕ3 and by the zoom factor λ, generates a digital image ẑd that can be equivalently

obtained by appropriately transforming zd. In particular, ẑd is the element indexed by λσ1 in the

scale space of Uϕ2G
ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd rotated by ϕ1,

ẑd = Rϕ1s

�
σ, Uϕ2G

ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd

�
, (35)

where σ = λσ1 and Rϕ1, Rϕ3, Uϕ2 are the continuos operators corresponding to Rϕ1, Rϕ3, Uϕ2

from Theorem 1.1.

2.2.1 Sampling the parameters

Suppose that we are given zd and want to define the discrete sets of parameters ϕ1, ϕ2, ϕ3, σ that can
be used to reasonably approximate the projections corresponding to all the possible transformations
in the 3D space of the observed object (plane).

From (35) the first transformation that we have to apply to zd isRϕ3 followed by Uϕ2G
ux

σ1

q
1

(cosϕ2)2
−1

.

From Theorem 1.1 we have ϕ2 ∈ [0,
π
2 ) and ϕ3 ∈ [0, π). From a practical point of view it is enough

to set ϕ2 ∈ [0, 80◦]. The image distortion caused by a small rotation Rϕ3 is more evident for
larger tilts Uϕ2 . We have to sample ϕ3 at a finer grain when ϕ2 increases. Experimental evidence
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Table 1: Affine transformation. Parameters and discrete sampling.
Parameter Range Sampling Precision Type

σ [σ1,∞) ∆σ = 2
1
p , p = 3 ratio

ϕ1 [0, 2π) ∆ϕ1 = 15◦ offset

ϕ2
�
0,

π
2

�
∆h = ∆

�
1

cos ϕ2

�
=
√

2 ratio

ϕ3 [0, 80◦] ∆ϕ3 = 72◦

h = 72◦ cos ϕ2 offset

suggests that an angle displacement of ∆ϕ3 = 72◦

h = 72◦ cos ϕ2 is enough [3]. The angle ϕ2 must be
sampled considering that when it is large, a small variation will generate a more evident distortion
on the image plane. For this reason, following [3], we select the ratio ∆h between two consecutive
values of h = 1

cos ϕ2
as ∆h =

√
2. The maximum value of h is approximately 4

√
2. The following

transformation is Rϕ1 that is an in-plane rotation. It can be uniformly sampled with an offset
∆ϕ1 = 15◦. The final transformation is a scale change. Given an image zd, with prior blurring σ1,
we have to define an initial σ(0) and build the scale space of element equally spaced by the factor
∆σ, For efficiency, it is reasonable to halve the image size for every doubling of σ(0). We divide
the computation into several octaves (i.e. doubling of σ(0)) of scale space elements separated by a
factor ∆σ = 2

1
p , where p is the number of intervals in each octave.

In detail, we start by computing s(σ(0), zd) with σ(0) = 1.6, and σr(0) =
�

σ(0)− σ1, as
suggested in [2]. Then we can build the first octave by s(σ(i) = kiσ(0), zd), ki = 2

i
p , i = 1, . . . , p, so

that two consecutive elements are spaced by ∆σ in the scale space. Then, we halve the last element
of the octave, that is s(2σ(0), zd), by skipping every second pixel. This allow us to get a zoomed
out view zsmall

d of the viewing plane blurred by σ(0) (34). Now we set zd ← zsmall
d , and we build the

next octave s(σ(i) = kiσ(0), zd), ki = 2
i
p , i = 1, . . . , p and so on. Experimental evidence [2] shows

that sampling p = 3 scales on each octave is enough for the purpose of feature extraction from a
pixel neighborhood. Notice that in order to generate s(σ(i), zd) it is sufficient to blur s(σ(i−1), zd)
by Gσ(i−1)

√
∆σ2−1.

3 Affine invariant filter functions

Considering the camera model of Section 1 and the digital image model of Section 2, we study a
family of filter functions that operates on the neighborhood of a pixel u = [ux, uy] ∈ Z2 belonging
to a digital image zd, f : Z2 → IR. We can use the selected camera model once we consider that f

operates on small regions of the input image and that we can approximate the observed object by
the tangent plane to the object that passes on u (i.e. smooth object surfaces). We define a filter
function as

f(ux, uy, σ, ϕ1) =
1

2πσ2µ2

� � l�

k=1

αke
−

(σ(R−ϕ1
mk)x+ux−τ1)2+(σ(R−ϕ1

mk)y+uy−τ2)2

2µ2σ2
zd(τ1, τ2)dτ1dτ2

(36)
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where αk ∈ IR, the number of components l, the means mk, and the value of µ are given in advance.
Using the notation of Section 2, we can rewrite f as

f(ux, uy, σ, ϕ1) =
l�

k=1

�
G

σR−ϕ1mk
σµ zd

�
(ux, uy)

=
l�

k=1

�
H 1

σ
G

R−ϕ1mk
µ Hσzd

�
(ux, uy)

=
l�

k=1

αk · s(σµ, σR−ϕ1mk, zd)(ux, uy)

=
l�

k=1

αk ·

�
TσR−ϕ1mks(σ, zd)

�
(ux, uy)

=
l�

k=1

αk · [TσmkRϕ1s(σ, zd)] (ux, uy)

=
l�

k=1

αk · ξk(ux, uy, σ, ϕ1)

= < α, ξ(ux, uy, σ, ϕ1) > .

We assume that filters are designed at σ = 1 and that σ ≥ 1. In other words, µ is the initial blur
that we apply to the image zd before starting the filtering process, and that filtering proceeds at
scale multiple of µ. In the previous section we defined σ(0) as the starting value for scale space
construction, so that we have σ(0) =

�
µ2 + σ2

1, since the continuos image is blurred by a prior blur
of σ1. As a consequence, µ = σr(0) =

�
σ(0)2 − σ2

1. In the previous section we roughly estimated
σ1 to be in [0.5, 1], and that σ(0) = 1.6 was a good starting value, so that µ ∈ [1.2, 1.5].

Now, from Proposition 2.1, we can extend the definition of f to handle projections of a 3D
plane that incurs in affine transformations. We get

f(ux, uy, σ, ϕ1, ϕ2, ϕ3) =
l�

k=1

αk ·

�
TσmkRϕ1s

�
σ, Uϕ2G

ux

σ1

q
1

(cosϕ2)2
−1
Rϕ3zd

��
(ux, uy)

=
l�

k=1

αk ·
�
TσmkRϕ1s

�
σ, z

ϕ2,ϕ3
d

��
(ux, uy)

=
l�

k=1

αk · ξk(ux, uy, σ, ϕ1, ϕ2, ϕ3)

= < α, ξ(ux, uy, σ, ϕ1, ϕ2, ϕ3) > .

Remark 3.1 Once we define a unique mechanism to select the values of σ and of the angles with

respect to the observed scene, the filter function becomes f(ux, uy) and it is an affine invariant filter

that can handle invariances with respect to affine transformations of the projected object in the 3D

space.
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3.1 Filters and different cameras

The function f does depend on the camera calibration matrix K̂. This means that selecting, say, a
given value of ϕ1, does not correspond to a real rotation of ϕ1 in the 3D space, since the rotation
is influenced by K̂. As a result, fixing the value of ϕ1 (or one of the other parameters) will result
in a different rotation of the 3D object on different cameras.

However, if we do not fix ϕ1 in advance and we define a unique mechanism to select the value
of ϕ1 with respect to the observed scene, switching the camera only requires to recompute ϕ1. We
do not need to calibrate the camera to use the filter. On the other hand, if we want to recover
the real rotation of the object, we need to estimate K̂. The same considerations hold for the other
parameters.

Non linear distortion d(·) due to the camera lens can be discarded, since we are assuming to
operate on small regions of the image.

3.2 3D object location

Again, once we define a unique mechanism to select the values of σ and of the angles with respect
to the observed scene, we can recover the rotation (Euler’s angles) of the observed object and its
scale. We do not have a clear information on its coordinates in the 3D space, since we should take
into account the depth and the perspective correction.

The scale σ gives us a rough estimate of the object depth/size, that we can use to make inference
on the depth map of the observed scene, once we consider the relative scales of the pixels belonging
to the current image.

Techniques that are based on structure from motion (SFM) could be used to estimate the 3D
coordinates on an input video, using the filter function f to localize corresponding pixels among
different views of the same scene.
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