A survey on Camera Models and Affine Invariance

Stefano Melacci
DIISM - University of Siena

August 9, 2014

1 Camera models
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Figure 1: Camera model: perspective projection.

Before starting our analysis, we introduce the basic properties of projections that we will use
throughout the report. In particular, we will introduce a generic camera model and then we will
move towards a simplified model that is more suitable for the proposed study.

Figure 1 describes a simple camera model in which a perspective projection is applied to map
the point X, expressed in world coordinates, onto the point u, expressed in pixel coordinates. We
are given a world reference system Ly = {X;, Xo, X3} that represents the 3D reference frame of
each real-world object. Then we have a camera-based reference system Lc= {C,Cs,C3} that is
centered on the optical centre of the camera, and an image plane frame | y= {x1,x2}. Finally, we
consider the pixel coordinates L p= {u1,us}, that are centered in the upper left corner of the CCD.



The projection model considered here is inspired by the pin-hole camera and it is based on
perspective projection. In particular, the rigid body motion between the world-frame and the
camera-frame consists of a rotation of the points in Ly about X3, X5, and X7 of the angles (3,
2, 1, respectively, followed by a translation To = [T¢,,Tc,, Tc,) (where Te is the center of
the word-frame expressed in camera coordinates). For convenience, the rotation is described by a
matrix R € IR>3,

1 0 0 cospa 0 sines cosps —sinps 0
R = 0 cospr —sinp; | - 0 1 0 - | sinps cosps 0O
0 singp; cospy —sinpz 0 cosps 0 0 1
and
Xc = RX + Tg. (1)

The perspective projection is defined by the focal length f, that is the distance of the camera-
frame origin and the image plane X. The C5 coordinate of 1 ¢ is assumed to be orthogonal to the
image plane X. The perspective projection maps a point expressed in 1 onto a point of the image
plane, expressed in 1 x. Formally,

€To XCS
The intersection of the optical axis with X" is called principal point, and its coordinates in L p
are given by ug = [ug, , ug,]’, whereas they are [ug, f] in Lo. We indicate with k,, and k,, the ratio

between the coordinates in | p and the ones in 1y, whereas s represents the skew between the axis
of L p. We can pass from image plane coordinates to pixel coordinates with

u:|:ul:|:|:kul$1+8x2]+uo‘ (3)

U ky,x2

X,
Xc,

. 2)

From now on we indicate with O the homogeneous coordinates of a generic point O, i.e. if O =
[O1,02,03])" then O = [AO1,\O2, O3, \]’. The camera model can be expressed as a combination
of rigid-body transform, perspective projection, and CCD imaging, and represented as

kul S Up, f 0 0 0
i=| 0 kuy uo 0 f 00 e | (4)
0 0 1 0 010 00 ‘ i
or, more compactly,
_ Ay O UQq B
u=KI[R|T¢|- X := 0  au, ug, R T |X (5)
0 0 1
where oy, = fky,, au, = fku, and as = fs. The matrix K is commonly referred to as the

calibration matriz, and it only depends on the intrinsic camera parameters. To complete the
camera model we should also take into account the lens distortion effect (fisheye, radial distortion,
...), shortly resumed by a non-linear function d(-),

a=K-d([R|Tc] X ). (6)



If we restrict our analysis to a small region of the image plane, the effects of d(-) are negligible. For
simplicity, in the following analysis we discard the lens distortion d(-).

Perspective cameras belong to a larger class of cameras that are commonly referred to as
projective cameras. Projective cameras are described by a general 3 x 4 matrix Ppyqj,

_ P11 P12 P13 Pu4 _
U= FpojX = | p21 p2 p3 pau | X (7)
Pb31 P32 P33 P34

that has 11 degrees of freedom, since the overall scaler of P does not matter (usually psq = 1).

1.1 Affine camera

Under some specific conditions, we can simplify the perspective camera model to reduce the degrees
of freedom of the map, making it more tractable. From (5) we recall that

~ Qy, Qs U, ri 2 3| Toy |
’L~L = K[R‘Tc] . X = 0 Oéu2 UQ2 T91 T922 T93 T02 X (8)
0 0 1 31 T32 T33 TC3

Now, we start moving the camera far away from the scene, along C3, and we also increase f by
a positive factor to get a magnification effect (zooming) and without changing the image size. At
time ¢ = 0 we have z(0) = T¢,, whereas at each time interval ¢ equation (8) becomes

z(t) z(t)

20 Y o v | [rnorme ore|Te, |
u = 0 j(((t))) FQuy UG, ron T22 723 | Io, | X (9)
0 0 1 31 T32 T33 Z(t)
711 12 13 Te,
2(t) X
= 2kl 722 re3 | Toy, | X (10)
Z(O) z(0) (

FORLL z(%) " T32 z((%) -r33 | 2(0)

When t — oo, we get
rin riz rs | Ty |
u=K T21 T922 T93 T02 X (11)
0 0 0 |Tg
that is an instance of affine camera, with the following properties and differences from the perspec-
tive model:

e the perspective camera does not preserve parallelism, length, and angle. It preserves collinear-
ity and incidence;

e the affine camera does not preserve length and angle. It preserves collinearily incidence, and
parallelism.

Affine cameras are also referred to as cameras at infinity.

Proposition 1.1 The affine camera model is not sensitive to changes in depth along the optical

axis.



Proof: We consider the plane through the world origin perpendicular to the optical axis, and
we assume, without any lack of generality, that R = I, so that we have X3 = 0. Suppose that we
move the plane by A along the optical axis, so that X3 = A. The image of any point on such plane
is, in the case of a perspective camera,

X1
lpersp = K | 1 (12)
T03 + A

For affine cameras we have
1
ﬂa ff= K 9 (13)
Tc,

so that we can see that the affine mapping is not affected by the variation of depth.

O

Proposition 1.2 In an affine camera model, given the depth variations A of the objects in the
scene and the average depth ngg, we have

A
Ugff — Upersp = W(upe,nsp — ug) (14)
Cs
where uqpp and Upersp are the coordinates of and an affine and a perspective projection, respec-
tively.

Proof:  Once we dehomogenize the coordinates of (12) and (13) and we substitute T, with
the average depth of the objects in the scene T3, it is easy to show that the proposition holds
true.

O

Proposition 1.3 When the variations of depths A of the objects in the scene is small compared
to the average depth T3, and if consider that the distance of each point from the optical axis is
small (i.e. small field of view) there are almost no differences between an affine or a perspective
camera.

Proof: Straightforward from Proposition (1.2).

O
Affine projections constitute a large class of projections that can be further divided inro several
specific instances (weak perspective, orthogonal projection, ...). They are all characterized by the
following form,
. b1 p12 P13 P14 |
=P X =1 pa1 p22 p23 poua | X (15)
0 0 0 P34

that has 8 degrees of freedom since the overall scale does not matter (i.e. we can set p3s = 1).



1.1.1 Decompositions of the affine camera matrix

We can go one step further and avoid including the coordinates of the principal point, since it
is not an intrinsic property of the affine camera and it depends by the particular choice of world
coordinates.

Proposition 1.4 The principal point u is not an intrinsic property of an affine camera.

Proof: Following (11) and the result of Proposition (1.1) the affine camera projection, and,
in particular, the matrix Py, can be written as!

i = PyrX

rin iz r3 | Iey |
= K| ra reg m3 |10, | X
0 0 0 1

ap s Uy ri 2 13| Ioy |
= 0 as wug, ro1 T22 123 | To, | X
| 0 0 1 0 0 0 1
_ [ Ki21:2 o Ri213 Toy, b
01 01
_ [ Ki21:2R1201:3 Ki21:2T0,., + uo
i 0 1
_ [ Ki212 0 Ri213 Toy, + Kl_:21,1:2u0 X
A 0 1
[ g 0 11 T12 713 T:(h B
= 0 a2 O ra1 roa 13 | To, | X
0o 0 1]l 0o 0 01

o2 i3 | I
= K| r 122 r3|To, | X
0 0 0 1

Notice that the calibration matrix K does not include the coordinates of the principal point u. The
matrix Ki.2 1.2 is positive definite by construction.

O

Proposition 1.5 An affine camera corresponds to an affine transformation Asp in the 3D space,
followed by an orthographic projection Oypino to the image plane, followed by an affine transforma-
tion Asp on the image plane.

Proof: It follows from the following derivation,

U = (AQD : Oortho ' A3D) - X

!We use a Matlab-like notation to indicate sub portions of matrices of vectors. For instance A1, 1., are the first
n rows and m columns of A.



[ b1 b2 D13 1 000 ain a2 a3 a4 )
= ba1  bog 523 1 00 221 222 223 324 b
L 0 0 1 0001 g A

P11 P12 P13 P4
= D21 D22 D23 P2 | X
0 0 0 1

= PgiX.

O

Notice than the Asp transformation is basically related to the camera calibration matrix.

1.2 Planar affine camera

If we restrict the viewing conditions, we can additionally simplify the affine camera model. We
suppose that the camera is viewing a planar scene, so that, without loss of generality, we can drop
one of the three coordinates of the 3D space after having appropriately adjusted the matrix R to
take into account the rotation of the viewing plane (we indicate with R = [74j] the new rotation
matrix). We consider the case in which we have X3 = 0. Following the result of Proposition (16),
we can plug the rotation R, remove X3, and we get the planar affine camera model,

| i T2 fcl X
=K | #y i | Ty Xy |- (16)
0 0 1 1
that can be further rewritten as,
L - X1
" { (1 } _ [ a1 Qg } [?:11 "2 Tc, } Xy (17)
U9 0 o fo1 To2 | e, 1
X1
= Kioi2[Ri21:2Tc,,] | X2 (18)
1
X1
_ [pn P12 p13] X, (19)
P21 P22 D23 1

leading to a 2D to 2D model with 6 degrees of freedom.

How can we interpret the role of those degrees of freedom? If we forget about the camera
model and we consider the effects of (19) on the image plane X, in Figure 2 we report a visual
interpretation of the 6 degrees of freedom. On the other hand, with the aim of understanding the
transformations that were applied to the plane in the 3D space and that leaded to the corresponding
pixels on X, we can give another interpretation to (19). We rewrite (19) as

X X X
u:[pll P12 P13] X :[pll p12:||: 1}+[p13]:14[ 1]‘|‘ZC- (20)
D21 P22 D23 1 P21 P22 Xa D23
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Figure 2: Planar affine imaging: transformation on the image plane X corresponding to the 6
degrees of freedom (translation is 2 degrees).

The vector Z¢ = [Zoy,, Zo,) = Kl;QJ;QTCI:Q is a translation expressed in the camera frame 1.
It is related but not correspondent to the translation 7 ¢y, Of (17) from the optical center to the
origin of Ly, due to the effect of the intrinsic camera parameters. The matrix A = K 1:2,1: 2R1 :2,1:2
is a 2 x 2 positive define matrix, since K 1:2,1:2 is positive definite by construction and R1 :2.1:2 is the
2nd leading principal minor of a 3D rotation matrix, so that it is positive definite (since a rotation
matrix is such that det(R) = 1).

Now, using classic arguments from spectral theory and linear algebra, we can decompose the
matrix A [3].

Theorem 1.1 A positive 2 X 2 matrixz A that defines an affine map which is not a similarity has
a unique decomposition

A=A RSOIUSDQR‘PS (21)
where A > 0 and Ry, , Uy,, Ry, are the following 2 x 2 matrices,
. [ cosp; —singy
Ror = | sing;  cosgy } (22)
- 0
Vo = | 1] )
[ cosps —sin s
Ro = | mbr e, (24)
| sings  coss

with o1 € [0,27], p2 € [0,5), and w3 € [0, 7). In the case of a similarity transformation, we have
w2 =0.

Proof: The matrix A’A is a symmetric positive semidefinite matrix, and it can be decomposed
as A’A = ODO’, where O is an orthogonal transform (i.e. O’ = O~!) and D is a diagonal matrix of
positive eigenvalues. We define B = AOD_%, so that BB’ = AOD 2D 20'A' = AOD~'0'A’ =
A(A’A)71A’ = I, and we can conclude that B is an orthogonal transform. It is easy to check that

BD30' = AOD™2D20' = AOO' = A



and, once we define F = D%, we have
A=\-BEO

where B and O are orthogonal matrices and E is a diagonal matrix with positive entries. Since
det(A) > 0, both det(B) and det(O) must share the same sign. Without any loss of generality we
consider the subgroup of orthogonal transformations with unitary determinant (i.e. we rescale E).
If det(B) = det(O) = 1, then B and O are rotations of angles ¢ and —ps. If their determinant
-1 0

0 1 } We consider 3 € [0,7) (if ¢3 > 7 we can replace

is —1, we can premultiply them by [

X O

w3 with ¢3 — 7 and add 7 to ¢1). Moreover, E = [ 0 A

], with A\g > A. We can group A to get

E=)\ [ £0 ] with ¢t = ’\—)\0 > 1. Once we replace t with @, @2 € [0,75) we get (21).

0 1
O

The angle ¢3 describes the rotation of the viewing plane around its normal (longitude). The angle
@9 is between the normal to the viewing plane and the optical axis (latitude), whereas ; is the
camera spin around its optical axis. The parameter A\ measures the zoom level (the camera can
move forward and backward). See Figure 3. Notice that the matrix Uy, is a tilt transformation

Camera ! Normal

Observed
Plane

Figure 3: Affine camera viewing a plane, as described by (21).

of angle @9 along the first coordinate. It scales the first coordinate while keeping fixed the second
one.

2 Digital image

The analysis of Section 1 implicitly considers continuos pixel coordinates u = [u1,us2]" and an
infinite resolution image plane X. In order to move towards a discrete representation of the digital
image, we have to introduce an additional layer of computations. Moreover, we must also take into
account the optical blur of the camera lens. We indicate with z; a digital image, and with z. its
continuos counterpart on X, so that z.(u1,uz) is the pixel value at coordinates u. We indicate with
za(uz, uy) the pixel value at the discrete coordinates (uz,u,) € Z*. The relationship between z,
and zg can be modeled by

Zd — Slgglzc (25)



where G,, is a Gaussian convolution with standard deviation o; (due to the optical blur of the
camera lens), and Sj is a sampling operator on a regular grid with mesh 1. The value of o is
assumed to be selected such that there is no aliasing in the S; sampling process. This means that,
if we are given the Shannon-Whittaker interpolation operator S, defined as

(Sza)(ui,u2) = Z sinc(ug — ug)sinc(ug — uy), (26)
(ug, uy)EZ?
where sincx = Sh;r%, we have
Sslgzn Zc = gzn Zc- (27)

It is easy to check that SS1z4 = z4. From a practical point of view assuming that a given digital
image has undergone a Gaussian blur o € [0.5,1.0] is enough to prevent significant antialiasing.

Looking at (20) and (25) we can sketch the complete model that maps the transformation
from a planar surface to the digital image by means of an affine camera. We define with p. the
“real-world” plane that we are viewing by the camera, and with A an affine map as in (20). It
immediately follows that z. = Ap., and, from (25), our complete mapping from the viewing plane
to the digital image becomes

Zd = SlgalApc' (28)

2.1 Transforming the digital image

What if we change the parameters of the transformation A? Does it correspond to applying the
same transformation to z4? The answer strictly depends on the type of transformation that we
apply. In what follows we make use of continuous operators and in order to apply them to the
discrete image zg we must first use the S operator on z4.

e Translation
Suppose that A is simply a translation 7 (i.e. p. is parallel to X'). It is easy to verify that 7
commute with G,,. If we indicate with 7 and 7 the translation offsets, we get

1 _w
(Goy Tpe)(ar,a2) = //277026 207 Peli1t + 71113 + 7)dydirs
1
1 —(a1+71_”’1)2+2(a2+72—72)2
B //277026 i Pe(71,72)dy1dy2
1

(Gorpe)(ar + 71, a2 + T2)
= (T7Gs,pc)(a1,a2).
We will use the commutativity of 7 and G,, together with (27) in the following computations.
In order to apply a translation 7 to zg we must first rebuild the continuos image, then apply
7T and finally sample with 57,
Tzg = 5178z

= 517851Gs pc

= 517Gy pe

= 5165, TP

and we get a translation of the viewing plane (discarding border effects).



e Rotation

Suppose that A is a rotation R. Similarly to the previous case we can use the commutativity
of R and G,, together with (27) (the commutativity can be verified using the same procedure
followed in the case of translations). We have

de

and we get a rotation of the viewing plane.

e Zoom

S1RSzy4
S1RES1Gs, pe
S1RGs, pe
5195, Rpe

Suppose that A is a uniform zoom H) of a factor A (A > 1 is a zoom out, A\ < 1 corresponds
to a zoom in). This case differs from the previous ones. Let us try to commute G,, with H.

We get

1
(Gor Hape)(a1,a2) = //2%0%
= | | et

N 271'0%)\26

1 (a3 =712+ (Aag—v2)?
e 20%%2
2mo2\?

_ (a1fﬁ1>2+éazfﬁz>2

20

e i De( A, Anz)dnidne

<a1—w1/x)2+2<a2—v2/x>2

271 Pe(71,72)dy1dy2

Pe(71,72)dy1dy2

(Goyape)(Aa1, Aaz)

(H/\g0'1>\pc) (ala a2) .

Commuting G,, with H) causes an alteration of the standard deviation of the Gaussian kernel.
Now, if we zoom the image z4 by a factor A, we have

Hxzq

SlH)\SZd
SlH)\SS&gglpc
5;17{A£;01Zk

Slg"TlH)\pc (29)

so that a zooming operation on z4 corresponds with the same operation applied to p. with
a different Gaussian blur. If we replace the original zoom with a zoom on z4 blurred by

o1V A2 —1 we get
HAG,, y3o—1%d

SlH,\QmmSzd
SIHAgalmsslgcnpc
SlHAgalmgalpc

Slg QH)\go'lpc
\ Uf—ré

516 Go1 Hape
Yoi-5 2

Sl g0'1 H)\pc

10



The last equation states that a zoom applied to the viewing plane p. corresponds to a digital
image z4 that is first blurred by o1V A2 — 1 and then zoomed by H,. Setting A > 1 realizes a
zoom-out operation, i.e. some details are lost. The previous equation indicates that in order
to recreate a zoom-out of the plane p. and acquire a digital image using the same lens (o1), we
have to take the digital image 24, add Gaussian blur, and zoom-out the image. If A < 1, we
gets zoom-in operation, i.e. we see more details. In order to recreate the zoom-in effect, we
should de-blur z4, and zoom-in the image. This can be appreciated by the negative variance

2
of the blur operator, o2 — % < 0.

o Tilt
If Ais a tilt U, along one axis we end up in a similar case to the previous one, since U, is
a zoom along one coordinate only (suppose the first one). Again, using the same arguments
of Hy, it can be shown that it does not commute with G,,. In particular, using Gaussian
separability, it is easy to get the following relationship

Upzg = S1U,Sz4
= SiU,S551G5 pe
= S1UupG5,Pc
= S5iGY -G B Usp.

= SIGY (G5Uepe)

where h = ﬁ A tilt in the wu, direction of z4 corresponds to the same operation applied
to pe (on up) followed by an anisotropic Gaussian blurring that blurs the tilted axis with
a different standard deviation. If we replace the original tilt with a tilt on z4 blurred by

o1V h? —1 along u, we get

UsG, frr=i#d SiUsG !

1Vh2-1
= Slusog;fll /7h2_1851g01pc
= Slu@ggimgcnpc
= Slgul 2ucpg01pc

1

| o ©
g2 1
1 p2

= 536"

Sz

2 o1 (GoiUspe)
2_%1 h
01—z

= 516, (GoUype)

= 51G5,Uype
The last equation states that a tilt ¢, applied to the viewing plane p. corresponds to a digital
image zg that is first blurred along wu, by o1, /m — 1 and then tilted by U,.

A natural property of U, is that it can be converted into a tilt along the second coordinate
U, by means of a rotation,
R(,%)Z/LpRg =U,. (30)
Finally, we notice that the previously described operators commute (at least in a weak sense),
so that the reported analysis can be easily extended to the case in which a rotation, a translation,

a zoom, and a tilt are combined.

11



2.1.1 Scale space

Building the scale space of an image z4 consists in computing the function s(o, z4), which returns
a digital image corresponding to z; blurred by a Gaussian kernel of width o, for increasing values
of 0. More formally, if we define o (i) as the function that returns the i-th scale,

s(a(i),zd) :gg(i)zd, izO,...,q—l. (31)

Given ¢(0) = o, we write o(i) = k;o(0), and, following (29), the scale space can be equivalently
defined in terms of variable zoom operations of a factor k; and using a fixed kernel G,,

s(kio(0),2q) = Gki0(0)%d
= H1H,Grio(0)7d

= Hk%go(o)HkiZd
so that the scale space can be interpreted as a zoom out of z; by k;, blur by a fixed kernel of width

0(0), zoom in of the result by k;.
We can extend this definition including the mean m # 0 of G,, that becomes G,

m 1 7<mz+ua:77'a;)2+(my+uy77—y)2
(95" 2d) (e uy) = 27ra2//e 2 2d(Tay Ty)dT2dTy

If we apply a zoom operation Hy, we have

m 1 _(mz+u17TI>2+(m:’!+’My7Ty)2
(ga H)\zd)(ul":uy) = 271'0'2//6 202 Zd()\Tm,)\Ty)ddeTy

1 _ (>\mm+>\uzf’Yz)2+(/;my+>‘“y77y>2
- woor ] /¢ e

= H)\gi\gl(um uy)a

that is the analogous of equation (29) when considering the mean of the Gaussian,
G Haza = HaGxg 2. (32)

Given 0(0) = o, m(0) = m, the extended scale space definition becomes

s(kio(0), kim(0),z) = Gyt za
= HkLinigkiJ(O) Zd

that is, filtering 24 with a Gaussian kernel of with k;o0 and mean k;m corresponds with a zoom out
of z4 by k;, blur by a fixed kernel of width ¢ and centered in m, zoom in of the result by k;.

Now, we recall that zy is the discrete counterpart of the continuos p. (forgetting about the
planar transformations), that has been already blurred by o1. We redefine the scale space in order

12



to consider this aspect,
S(O’(i), Zd) = Slgo(i)pc

= Slg\/mgmpc

= S1g\/mzd
= 519G, (i)2d

where 0,.(i) = y/0(i)? — 02 is the real blur that we have to apply to z4 to a get the element of the
scale space indexed by o (7).

If we assume o1 = 0.5, a practical results from related literature [2] suggest to build the scale
space by first doubling the image size (i.e. H 124, linear interpolation), leading to an image with
o1 = 2 x 0.5 = 1.0 due to (29). Several experimentations show that o(0) = 1.6 is a reasonable
choice for feature extraction, so that, starting from the doubled image, o,(i) &~ 1.24. Other authors
[3] suggests to use o1 = 0.8, so that, after doubling the image size, we get an image with o1 =
2 x 0.8 = 1.6. In this case we have to set 0,(0) = 0 to get o(0) = 1.6, i.e. s(c(0),z2q) is simply the
doubled image without any additional blurs.

We consider again the scale space in which o(i) = k;0(0). From (29) we have

s(kio(0),2a) = S1H 1 Go(0)Hi,pe

= Hé(Hkbgo(O)\/kfi—lzd)
= HiG 1—%27%2’1 (33)

= ga(O)\/kfflzd
= go’r(i)zd

In this setting the real blur to be applied to z4 is 0,.(i) = 0(0)4/k? — 1.

Another commonly used property of scale spaces is that if we downscale the image s(20 (i), z4)
by a factor %, we get

Has(20(i),2a) = H2Gog(i)Pe
= gg(i)HQPC (34)
= ga’,r(i) GoyHape

so that we get a zoomed-out p. blurred by o (7).

2.2 Artificially generated transformations

Suppose that we are only given a digital image zy and we want to artificially simulate the image
Zq af the same resolution of z; that corresponds to an affine transformation of the observed plane
on the 3D space. From (20), Theorem 1.1, and the model of (25) we can write

2d:g(pc) = SlH%(galApc)
= SlH%(galTHARemumR@apr:)-

13



Using the previously described commutation properties we write 24 in function of zg4,

24 = g(zd) = H%(TH,\QJIMR%UWQZT T 1R¢3Zd).

(cospn)?

Translation 7 and zoom H weakly commute, in the sense that there exists a translation 7 for
which TH = HT. We get

’éd = g(Zd) = IH%HAgglmR(plu(pgg:f T 1R4p32d.

(cospa)?

Now, suppose that the optical axis is aligned with the observed point (i.e. no translation), then

20=¢9(zq) = H1HNG — R U, g Ronzd
9(za) 0G0 vsriRotlend, ] = Res

= TG, TR R

(cospa)?
= RpHiG  Hallp, G Ryy2a
X O1 vi o1 /<Cosm)2 -1

Comparing the last expression with (33), it is easy to see that we can write the above formula as

’??d = chls <)\O’1, Z/{(p2g:I il 1R¢73zd> .
1

(cospn)? a
that leads to the following proposition.

Proposition 2.1 We are given a plane in a 3D space, an affine camera with blur o1, and the
digital image zq acquired by the camera. A transformation of the plane, parametrized by the Euler’s
angles 1,2, s and by the zoom factor A\, generates a digital image Zg that can be equivalently
obtained by appropriately transforming zq. In particular, Z5 is the element indexed by Aoy in the
scale space of Uy, G"* 1R¢3zd rotated by 1,

1
- -
1Y/ (cospa)?

2d = R<p18 (O’, USQQQZT\/ngpg,Zd) ) (35)

where 0 = Aoy and Ry, Rys, Uy, are the continuos operators corresponding to Ry, Ry,, Uy,
from Theorem 1.1.

2.2.1 Sampling the parameters

Suppose that we are given z; and want to define the discrete sets of parameters @1, @2, 3, o that can
be used to reasonably approximate the projections corresponding to all the possible transformations
in the 3D space of the observed object (plane).

From (35) the first transformation that we have to apply to z,4 is R, followed by U,,, g;‘f

1
(cospa)?
From Theorem 1.1 we have o € [0, ) and @3 € [0,7). From a practical point of view it is enough

to set @9 € [0,80°]. The image distortion caused by a small rotation R, is more evident for
larger tilts U,,. We have to sample @3 at a finer grain when 2 increases. Experimental evidence
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Table 1: Affine transformation. Parameters and discrete sampling.

Parameter | Range | Sampling Precision | Type
o [01,00) | Ao = 2%, p=3 RATIO
01 [0,27) | Agpy = 15° OFFSET
V2 0,5) | Ah= A Cosch) = /2 | RATIO
3 [0,80°] | Agps = = = T2°cos @y | OFFSET
suggests that an angle displacement of Aps = &~ = 72° cos ¢ is enough [3]. The angle p2 must be

sampled considering that when it is large, a small variation will generate a more evident distortion
on the image plane For this reason, following [3], we select the ratio Ah between two consecutive
values of h = <p2 as Ah = v/2. The maximum value of h is approximately 41/2. The following
transformation is R, that is an in-plane rotation. It can be uniformly sampled with an offset
Ay = 15°. The final transformation is a scale change. Given an image z4, with prior blurring oy,
we have to define an initial ¢(0) and build the scale space of element equally spaced by the factor
Ao, For efficiency, it is reasonable to halve the image size for every doubling of o(0). We divide
the computation into several octaves (i.e. doubling of ¢(0)) of scale space elements separated by a

1
factor Ao = 27, where p is the number of intervals in each octave.

In detail, we start by computing s(c(0),z4) with o(0) = 1.6, and 0,(0) = /0(0) — o1, as
suggested in [2]. Then we can build the first octave by s(o(i) = k;0(0), z4), ki = 25, 1=1,...,p, 80
that two consecutive elements are spaced by Ao in the scale space. Then, we halve the last element
of the octave, that is s(20(0), z4), by skipping every second pixel. This allow us to get a zoomed

out view z5m of the viewing plane blurred by o(0) (34). Now we set zq < zimall " and we build the

next octave s(o(i) = k;o(0), zq), ki = 2v,i=1,...,p and so on. Experimental evidence [2] shows
that sampling p = 3 scales on each octave is enough for the purpose of feature extraction from a
pixel neighborhood. Notice that in order to generate s(o (i), z4) it is sufficient to blur s(o (i —1), z4)

by Gy im1yva—T

3 Affine invariant filter functions

Considering the camera model of Section 1 and the digital image model of Section 2, we study a
family of filter functions that operates on the neighborhood of a pixel u = [uy,u,] € 7?2 belonging
to a digital image zq, f : Z> — IR. We can use the selected camera model once we consider that f
operates on small regions of the input image and that we can approximate the observed object by
the tangent plane to the object that passes on w (i.e. smooth object surfaces). We define a filter
function as

(a(R,wlmk)w+uz—71)2+(‘7(R—<pl mk)y+“y_72)2

f(uwa Uy, T, Qol) 27'('0'2 / / Z ape 2u?o? Zd(Tla Tz)dTldTZ
(36)
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where oy, € IR, the number of components [, the means my, and the value of p are given in advance.
Using the notation of Section 2, we can rewrite f as

f(um;uyy g, 801) =

MN

R_
( gﬂ mmkzd) (ux,uy)

B
=l
—

= 3 (oG ™ M) ()

k=1
l
= ay - s(op, oR_p my, 2q) (U, Uy)
k=1
l
= a, - [%R_mmkS(U, Zd)] (Uz, uy)
k=1
l
= k * [Tomy, Ry 8(0, 24)] (U, uy)
k=1
l
= ak'ék(uxvuyvavwl)
k=1
= < av&(u:rauya g, @1) >

We assume that filters are designed at ¢ = 1 and that ¢ > 1. In other words, u is the initial blur
that we apply to the image z; before starting the filtering process, and that filtering proceeds at
scale multiple of p. In the previous section we defined o(0) as the starting value for scale space
construction, so that we have o(0) = y/u? 4 02, since the continuos image is blurred by a prior blur
of o1. As a consequence, i = 0,(0) = 1/0(0)2 — o}. In the previous section we roughly estimated
o1 to be in [0.5,1], and that ¢(0) = 1.6 was a good starting value, so that u € [1.2,1.5].

Now, from Proposition 2.1, we can extend the definition of f to handle projections of a 3D
plane that incurs in affine transformations. We get

l
f(uw7uy7a7 8017(1027@3) = Zak . [%mkR<ﬂ18 <U7 u¢2ggz\/1717z¢32d>] (u$7uy)

k=1 1y (coseg)2 —
!
= Y i [Tom, R (0,25)] (s, uy)
k=1
!
= > k- &ty uy, 0,01, 02, 3)
k=1
= <a7§(uxvuy70—a§017§02;¢3) >

Remark 3.1 Once we define a unique mechanism to select the values of o and of the angles with
respect to the observed scene, the filter function becomes f(u,uy,) and it is an affine invariant filter
that can handle invariances with respect to affine transformations of the projected object in the 3D
space.
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3.1 Filters and different cameras

The function f does depend on the camera calibration matrix K. This means that selecting, say, a
given value of ¢1, does not correspond to a real rotation of 1 in the 3D space, since the rotation
is influenced by K. As a result, fixing the value of ¢y (or one of the other parameters) will result
in a different rotation of the 3D object on different cameras.

However, if we do not fix ¢; in advance and we define a unique mechanism to select the value
of ¢1 with respect to the observed scene, switching the camera only requires to recompute 1. We
do not need to calibrate the camera to use the filter. On the other hand, if we want to recover
the real rotation of the object, we need to estimate K. The same considerations hold for the other
parameters.

Non linear distortion d(-) due to the camera lens can be discarded, since we are assuming to
operate on small regions of the image.

3.2 3D object location

Again, once we define a unique mechanism to select the values of ¢ and of the angles with respect
to the observed scene, we can recover the rotation (Euler’s angles) of the observed object and its
scale. We do not have a clear information on its coordinates in the 3D space, since we should take
into account the depth and the perspective correction.

The scale o gives us a rough estimate of the object depth/size, that we can use to make inference
on the depth map of the observed scene, once we consider the relative scales of the pixels belonging
to the current image.

Techniques that are based on structure from motion (SFM) could be used to estimate the 3D
coordinates on an input video, using the filter function f to localize corresponding pixels among
different views of the same scene.
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